Uncategorized

This robot arm can detach its hand to grab things out of reach

A robotic arm with its articulated hand detached and crawling on its own.
This robotic arm’s articulated hand can detach and crawl around on its own. | Screenshot: YouTube

Researchers from the École polytechnique fédérale de Lausanne (EPFL) in Switzerland have developed an articulated hand that can extend the reach of a robotic arm by detaching and crawling away on its own to grab things. The research was recently presented at the International Conference on Robotics and Automation (ICRA), and spotted by IEEE Spectrum.

Due to their strength and speed, robotic arms are typically permanently attached to floors or other structures for added stability, which limits their reach. The goal of the research, conducted at the EPFL’s Learning Algorithms and Systems Laboratory (LASA), was to develop a bimodal robotic hand with expanded grasping capabilities, including occasional independence from the robot arm it’s attached to.

A short video clip demonstrating a robotic hand detaching from a robot arm and then standing on its fingers.
GIF: YouTube
The hand can detach and reattach to a robot arm as needed.

Robot hands are usually designed with a single goal in mind: to hold on to things. To develop one that could do that and crawl around on its own like the Addams Family’s Thing, the researchers generated and refined a basic design using a genetic algorithm (which relies on biological tricks like natural selection and evolution) and the MuJoCo physics simulator to test the practicality of iterations.

The algorithm and simulations helped the researchers determine the optimal position and number of articulated fingers needed, which turned out to be five in a similar layout to our own. The robotic hand also uses a magnetic connector at the wrist allowing it to attach and detach from an arm autonomously.

A robot arm with a dextrous multi-fingered hand is demonstrated in a short video clip picking up two objects at once.
GIF: YouTube
The robotic hand’s fingers can bend in both directions so it can crawl, but it also allows the hand to grasp two objects at once when attached to a robot arm.

The hand’s fingers can bend in both directions, allowing it to use some of them to lift objects while the rest function as tiny legs. This design also expands the usefulness of the hand while it’s attached to a robot arm. It can lift multiple objects at once without twisting the arm around to reposition unused fingers.

The hand is not only useful as a way to extend the reach of a robotic arm that can’t move around on its own. It’s considerably smaller than robots like Boston Dynamics’ Spot, which can freely locomote using four legs. Spot has already been upgraded with its own robot arm and a grasper, but with an articulated hand that operates independently, the robot could be better equipped to explore or analyze areas it can’t squeeze into.